

Adjustable Sleeve Template Assembly Device for Joint MR/US-guided Diagnosis and Treatment of Prostate Cancer: Initial Design and Feasibility Evaluation

Andriy Fedorov¹, Sang-Eun Song¹, Tina Kapur¹, Luciant Wolfsberger¹, Robert Owen², Iris Elliott³, William M. Wells¹, Clare Tempany¹

> ¹Dept of Radiology and Radiation Oncology, Brigham and Women's Hospital, Boston MA ²BK Medical, Peabody MA ³Hologic Inc, Bedford MA

- 30% incidence for men in their 50s, 80% for men in their 70s
 - 450,000 new cases in 2015
- Second most-common cause of cancerrelated death in men
 - 1 of 10 men will die from prostate cancer
- Imaging: diagnosis, staging, treatment

Challenges: early and accurate detection, choice of treatment, delivery of treatment, active surveillance

Transrectal Ultrasound (TRUS)

- Everyday modality for prostate imaging
 - Biopsy guidance (non-targeted)
 - Brachytherapy
- Typically not effective for cancer localization
 - 40% cancers are isoechoic
- Advanced modes of operation
 - B-mode
 - Doppler
 - Contrast-enhanced (research)
 - Elastography (research)
 - RF-mode for tissue typing (research)

http://www.cancer.umn.edu/cancerinfo/NCI/glossary/CDR322891.html

BK 8818 transrectal probe, http://bkmed.com

Magnetic Resonance Imaging

- MACH COLDED THE
 - State of the art:
 - Multi-parametric (T2W, DCE, DWI, spectroscopy)
 - 3 Tesla magnet
 - endorectal coil
 - Most effective modality for detection, staging, monitoring of response, focal treatment
 - IGT applications (clinical research):
 - Biopsy
 - Brachytherapy
 - Focal therapy (eg HIFU)

TRUS + MR

Adjustable Sleeve-Template Assembly

ASTA schematic drawing courtesy Wendy Plesniak

© NIH National Center for Image-Guided Therapy, 2012

- Accommodate MR (D=26 mm) and US (D=20mm) probes
- Minimum device profile
- Diagnostic quality of the image
- No/minimal deformation of the surrounding tissue while exchanging probes
- Facilitate repeated imaging interchanging MR/US probes

Design

Implementation

Phantom studies:

- 1. Confirm acoustic coupling and transparency
- 2. Evaluate the setup workflow
- 3. Confirm imaging quality upon reinsertion

Preliminary evaluation

Preliminary evaluation

Preliminary evaluation

AMIGO Suite setup

Integration of the BK ProFocus US and orientation tracker with 3D Slicer enabled by Public software Library for UltraSound imaging research (PLUS) (PerkLab, Queens U.) and OpenIGTLink.

- Improved MR-TRUS tissue/imaging correlation
 - Reduce or eliminate concerns of gland motion/ deformation
- Improved validation of the MR-TRUS registration
 - Diagnostic MR \rightarrow Intraprocedural MR \rightarrow TRUS

– Diagnostic MR \rightarrow TRUS

- Testing of MR imaging with Hologic rigid coil (pending clearance for integration with Siemens magnet)
- Refinement of the prototype, integration with the Hologic tabletop
- Design of the patient studies protocols

- BWH Radiation Oncology: Paul Nguyen, Emily Neubauer
- PLUS team and especially Andras Lasso (PerkLab, Queens U.)
- NIH support:
 - R01 CA111288
 - P41 EB015898
 - P01 CA067165

